Critical Exponent for Semilinear Wave Equations with Space-Dependent Potential

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical Exponent for Semilinear Wave Equations with Space-Dependent Potential

We study the balance between the effect of spatial inhomogeneity of the potential in the dissipative term and the focusing nonlinearity. Sharp critical exponent results will be presented in the case of slow decaying potential.

متن کامل

Non-homogeneous semilinear elliptic equations involving critical Sobolev exponent

where λ > 0 is a parameter, κ ∈ R is a constant, p = (N + 2)/(N − 2) is the critical Sobolev exponent, and f(x) is a non-homogeneous perturbation satisfying f ∈ H−1(Ω) and f ≥ 0, f ≡ 0 in Ω. Let κ1 be the first eigenvalue of −Δ with zero Dirichlet condition on Ω. Since (1.1)λ has no positive solution if κ ≤ −κ1 (see Remark 1 below), we will consider the case κ > −κ1. Let us recall the results f...

متن کامل

Elliptic Equations with Critical Exponent

where As3 is the Laplace-Beltrami operator on B' . Let 0* C (0, 7r) be the radius o r B ' , i.e., the geodesic distance of the North pole to OBq The values 0 < 0* < 7r/2 correspond to a spherical cap contained in the Northern hemisphere, 0* -7r/2 corresponds to B ~ being the Northern hemisphere and the values rr/2 < 0* < ~c correspond to a spherical cap which covers the Northern hemisphere. Fin...

متن کامل

Nonhomogeneous Elliptic Equations with Decaying Cylindrical Potential and Critical Exponent

We prove the existence and multiplicity of solutions for a nonhomogeneous elliptic equation involving decaying cylindrical potential and critical exponent.

متن کامل

The Fujita Exponent for Semilinear Heat Equations with Quadratically Decaying Potential or in an Exterior Domain

Consider the equation (0.1) ut = ∆u− V u+ au p in R × (0, T ); u(x, 0) = φ(x) 0, in R, where p > 1, n ≥ 2, T ∈ (0,∞], V (x) ∼ ω |x| as |x| → ∞, for some ω 6= 0, and a(x) is on the order |x| as |x| → ∞, for some m ∈ (−∞,∞). A solution to the above equation is called global if T = ∞. Under some additional technical conditions, we calculate a critical exponent p such that global solutions exist fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Funkcialaj Ekvacioj

سال: 2009

ISSN: 0532-8721

DOI: 10.1619/fesi.52.411